

Welcome to pyRserve’s documentation!

pyRserve is a library for connecting Python to an R process running under Rserve.
Through such a connection variables can be get and set in R from Python,
and also R-functions can be called remotely.

This documentation applies to pyRserve release V 1.0.3

Contents:

	Overview
	What pyRserve does

	Supported platforms

	License

	Quick installation

	Quick usage

	Source code repository

	Documentation

	Support

	Missing features

	Installation
	Installing R from sources

	Installing Rserve

	Installing pyRserve

	Running unittests

	pyRserve manual
	Setting up a connection to Rserve
	Running both Rserve and pyRserve locally on one host

	Setting up a remote connection to Rserve

	Shutting down Rserve remotely

	String evaluation in R

	More expression evaluation

	Expression evaluation without expecting a result

	Defining functions and calling them through expression evaluation

	The R namespace - setting and accessing variables in a more Pythonic way

	Expression evaluation through the R namespace

	Calling functions in R

	Getting help with functions

	Applying an R function as argument to another function

	Applying a variable already defined in R to a function

	Handling complex result objects from R functions
	TaggedLists

	AttrArrays

	TaggedArrays

	Back to the t-test example

	Out Of Bounds messages (OOB)
	An example showing how nesting of OOB messages works

	Changelog

	This is the MIT license

Indices and tables

	Index

	Module Index

	Search Page

Overview

What pyRserve does

pyRserve is a library for connecting Python to R [http://www.r-project.org/]
(an excellent statistic package). Running Rserve [http://www.rforge.net/Rserve/]
in R attaches the R-interpreter to a network socket, waiting for pyRserve to connect to it.
Through such a connection, variables can be get and set in R from Python,
and also R-functions can be called remotely.

In contrast to rpy or rpy2 [https://rpy2.github.io/] the R process does not have to
run on the same machine, it can run on a remote machine and all variable access and
function calls will be delegated there through the network.

Furthermore - and this makes everything feel very pythonic - all data structures will
automatically be converted from native R to native Python and numpy types and back.

Supported platforms

This package has been mainly developed under Linux, and hence should run on all standard unix
platforms, as well as on MacOS. pyRserve has also been successfully used on Windows machines.
Unittests have been used on the Linux and MacOS side, however they might just work fine for Windows.

It has been tested to work with Python 2.7.x, 3.6 to 3.9.

The latest development has been tested with some previous and current versions of R and Rserve.

License

pyRserve has been written by Ralph Heinkel (ralph-heinkel.com) [https://ralph-heinkel.com/] and is
released under MIT license [https://github.com/ralhei/pyRserve/blob/master/LICENSE].

Quick installation

From your unix/macOS,windows command line run:

pip install pyRserve

For a fully functional setup also R and Rserve have to be installed. See section
installation [https://pyrserve.readthedocs.io/en/latest/installation.html] in the pyRserve
documentation for instructions.

Quick usage

Open a first shell and start up the R server, by calling the module Rserve that provides
the actual network connectivity for R:

$ R CMD Rserve

R (Rserve) will now listen on port 6311 (on localhost). Of course Rserve can be configured to
listen on an exposed port and hence will be accessible from remote hosts as well.

Open a second shell, start Python, import pyRserve, and initialize the connection to Rserve:

$ python
>>> import pyRserve
>>> conn = pyRserve.connect()

The default connection will be done on localhost:6311. Other hosts can be reached by
calling pyRserve.connect(host=..., port=...) as well.

The conn object provides a namespace called conn.r that directly maps all variables
and other global symbols (like functions etc) and hence makes them accessible from Python.

Now create a vector in R, access the vector from Python (will be converted into a numpy array), and
call the sum()-function in R:

>>> conn.r("vec <- c(1, 2, 4)")
>>> conn.r.vec # access vector 'vec' as an attribute of 'conn.r'
array([1., 2., 4.])
>>> conn.r.sum(conn.r.vec) # 'sum' in running in the R-interpreter, returning the result to Python
7.0

The other way around also works:

>>> conn.r.somenumber = 444 # set a variable called 'somenumber' in the R interpreter...
>>> conn.r("somenumber * 2") # ... and double the number
888.0

Source code repository

pyRserve is now hosted on GitHub at https://github.com/ralhei/pyRserve.

Documentation

Documentation can be found at https://pyrserve.readthedocs.io.

Support

For discussion of pyRserve and getting help please use the Google newsgroup
available at http://groups.google.com/group/pyrserve.

Issues with the code (like bugs, etc.) should be reported on GitHub at
https://github.com/ralhei/pyRserve/issues.

Missing features

	Authentication is implemented in Rserve but not yet in pyRserve

	TLS encryption is not implemented yet in pyRserve. However using ssh tunnels
can solve security issues in the meantime (see documentation).

Installation

Before pyRserve can be used, R and Rserv have to be installed properly.
Installation instructions for both packages are available on their corresponding
websites at http://www.r-project.org/ and http://www.rforge.net/Rserve/

Installing R from sources

For R being able to run Rserve properly it has to be installed with the
--enable-R-shlib option.

The following command show how to do this for the sources. Make sure you have a
fortran compiler installed, otherwise installation will not be possible.

Note

You need a couple of LINUX packages and libraries to be installed, like a fortran
compile and readline/bzip2/… development libraries. On OpenSuse these can be installed
with zypper install -y gcc-fortran readline-devel libbz2-devel xz-devel pcre2-devel libcurl-devel
Other Linux distributions provide packages with similar names.

On installing R then looks like:

R_VER=4.3.1 # possibly find the latest version, or use the version you require
curl -LO https://cran.r-project.org/src/base/R-4/R-${R_VER}.tar.gz
tar -xzf R-${R_VER}.tar.gz
cd R-${R_VER}
./configure --enable-R-shlib -with-x=no
make
make install

For Windows it might be just enough to install a prebuilt R package. The same
might be true for some Linux distributions, just make sure to install a
version which also contains all headers necessary for compiling Rserve in the
next step.

Installing Rserve

If you have already downloaded the tar file then from your command line run:

curl -LO http://www.rforge.net/Rserve/snapshot/Rserve_1.8-12.tar.gz
R CMD INSTALL Rserve_1.8-12.tar.gz

Older versions of Rserve might also work, the earliest function version however
seems to be 0.6.6.

Note

Rserve usually daemonizes itself after starting from the command
line. If you want to prevent this from happening (e.g. because you would
like to control Rserve by a process management tool like supervisord
or want to control Rserve running the unittests with pytest --run-rserve)
then Rserve has to be install with the special -DNODAEMON compiler flag:

PKG_CPPFLAGS=-DNODAEMON R CMD INSTALL Rserve_1.8-12.tar.gz

Installing pyRserve

From your unix/windows command line run:

pip install pyRserve

If you want to develop or test locally, then also install extra packages for testing:

pip install pyRserve[testing]

Currently supported Python versions are 3.6 to 3.11. It might still run on Python 2.7
but this is not supported anymore and will be deprecated in future versions.

In the next section you’ll find instructions how to use everything together.

Running unittests

After installation is completed - and for those who want to contribute to pyRserve’s developement -
unittests can be run straight from the command line. Remember to have pyRserve installed with
the testing dependencies, as described in the previous section.

In the current setup pytest is able to automatically fire up an Rserve-process which needs to be available
for the unittests to run against. This is achieved by calling:

$ pytest testing --run-rserve
=========================== test session starts ===========================
platform linux -- Python 3.11.3, pytest-7.4.0, pluggy-1.2.0
rootdir: /home/user/pyRserve
collected 50 items

testing/test_rparser.py .. [84%]
testing/test_taggedContainers.py [100%]
=========================== 50 passed in 4.19s ============================

In case you have Rserve already running on localhost, it is sufficient to call pytest testing.

pyRserve manual

This manual is written in sort of a walk-through-style. All examples can be tried out on the Python
command line as you read through it.

Setting up a connection to Rserve

Running both Rserve and pyRserve locally on one host

This is the most simple solution, and we will begin with it before explaining remote connections.

First of all startup Rserve if it is not yet running:

$ R CMD Rserve

By default Rserve is listening on port port 6311 (its default) on localhost (or 127.0.0.1) only,
for security reasons. This means that no connection from any other machine is possible to it.
For now, and for simplicity, we stick with running everything (Rserve and pyRserve) on the same host.

R puts itself into daemon mode, meaning that your shell comes back, and you have no way to
shutdown R via ctrl-C (you need to call kill with it’s process id). However Rserve can be started in
debug mode during development. In this mode it’ll print messages to stdout helping you to see whether your
connection works etc. To do so Rserve needs to be started like:

$ R CMD Rserve.dbg

Now we can try to connect to it.
From the python interpreter import the pyRserve package and by omitting any arguments to the connect() function
setup the connection to your locally running Rserve:

$ python
>>> import pyRserve
>>> conn = pyRserve.connect()

The resulting connection handle can tell you where it is connected to:

>>> conn
<Handle to Rserve on localhost:6311>

The connection will be closed automatically when conn is deleted, or by explicitly calling the close()-method:

>>> conn.close()
>>> conn
<Closed handle to Rserve on localhost:6311>

Running operations on a closed pyRserve connector results in an exception. However a connection can be reopened by
calling the connect() method. It reuses the previously given values (or defaults) for host and port:

>>> conn.connect()
<Handle to Rserve on localhost:6311>

To check the status of the connection use:

>>> conn.isClosed
False

Setting up a remote connection to Rserve

Variant 1: Make Rserve listen to a public port

To allow Rserve accept connections from remote hosts on a public port a special flag needs to be set in its
configuration file (which might be missing initially). Once the remote enable-flag is set there,
Rserve needs to be restarted in order to honor it.

Warning

Opening Rserve on a port which is publically (or maybe within an organization like a company)
accessible allows anyone who has access to this machine to connect to the Rserve server process.

Warning

Traffic between Rserve and pyRserve is not encrypted - so anyone with access to the network
would in principle be able to sniff your communication, or even manipulate it.

By default Rserve tries to load the configuration file from /etc/Rserv.conf. So if you have
root privileges on your host you can enable remote connections with the following command:

$ sudo echo "remote enable" > /etc/Rserv.conf

Then restart Rserve.

In case you don’t have sudo privileges the config file can be created anywhere else, e.g.:

$ echo "remote enable" > ~/.config/Rserv.conf

Then restart Rserve like $ R CMD Rserve --RS-conf ~/.config/Rserv.conf.

Variant 2: Connect to Rserve through an SSH tunnel

This option is definitely more secure than variant 1. First of all communication is encrypted.
Secondly you can easily control who is allowed to access Rserve from outside the host
Rserve is running on.

The approach could be:

	Create a generic account on the host running Rserve, called e.g. rserveuser.
For this example let the host be called rservehost.

	In the rserveuser’s home directory, inside the ~/.ssh directory, add the public
ssh key of allowed users to the ~/.ssh/authorized_keys file. This can be done
in a very special ways that only enables access to Rserve, without any other
privilege like opening a remote shell etc.

To achive this, a line in the ~/.ssh/authorized_keys must look like:

command="echo 'Rserve only account.'",restrict,port-forwarding,permitopen="localhost:6311" ssh-ed25519 AAAAC3..pxfm user1@someuserhost

	Start rserve in normal mode, without the remote enable flag, so it only listens on localhost.

	user1 (owning the public ssh key added in 2.) then opens an SSH tunnel to rservehost:

$ ssh -N -L 6311:localhost:6311 rservehost

This command forwards traffic from port 6311 on user’s client machine to localhost:6311 on
rservehost.

	user1 on his/her client machine opens Python and establishes an Rserve connection with:

>>> import pyRserve
>>> conn = pyRserve.connect()

The connection to localhost:6311 on the client machine will be forwarded to Rserve listening
on localhost:6311 on rservehost.

Variant 3: Connect to Rserve through a Unix socket

This option might be more flexible for concurrent/dynamic connections than variants 1 and 2 and
is slightly more secure than variant 1 (and less than variant 2), as the Unix socket can only be
accessed from within the server.

To enable Unix sockets in Rserve a flag needs to be enabled:

R CMD Rserve --RS-socket /tmp/rserve.sock

That socket can now be used from pyRserve:

>>> import pyRserve
>>> conn = pyRserve.connect(unix_socket='/tmp/rserve.sock')

Warning

Just as in Variant 1, communication between pyRserve and Rserve is not encrypted.
The only additional security is that this socket cannot be accessed from the network,
but a user with access to the system can still sniff/manipulate your connection.

Shutting down Rserve remotely

If you need to shutdown Rserve from your client connection the following command can be called:

>>> conn.shutdown()

String evaluation in R

Having established a connection to Rserve you can run the first commands on it. A valid R command can be executed
by making a call to the R name space via the connection’s eval() method, providing a string as argument which
contains valid R syntax:

>>> conn.eval('3 + 5')
8.0

In this example the string "3 + 5" will be sent to the remote side and evaluated by the R interpreter.
The result is then
delivered back into a native Python object, a floating point number in this case. As an R expert you are
probably aware of the fact that R uses vectors for all numbers internally by default. But why did we receive
a single floating point number? The reason is that pyRserve looks at arrays coming from Rserve and converts
arrays with only one single item into an atomic value. This behaviour is for convenience reasons only.

There are two ways to override this behaviour so that the result is a real (numpy) array:

	Apply atomicArray=True to the eval()-method:

>>> conn.eval('3 + 5', atomicArray=True)
array([8.])

This behaviour is then valid for one single call.

	Apply atomicArray=True to the connect()-function to make it the default for all calls to eval():

conn = pyRserve.connect(atomicArray=True)

Then calling eval() would return a numpy array in every case:

>>> conn.eval('3 + 5')
array([8.])

conn.atomicArray will tell you how the connection handles results. This attribute contains the value of the
atomicArray kw-argument given to connect. It can also be changed directly for a running connection.

>>> conn.atomicArray
True
>>> conn.atomicArray = False # change value

More expression evaluation

Of course also more complex data types can be sent from R to Python, e.g. lists or real arrays. Here are some examples:

>>> conn.eval("list(1, 'otto')")
[1, 'otto']
>>> conn.eval('c(1, 5, 7)')
array([1., 5., 7.])

As demonstrated here R-lists are converted into plain Python lists whereas R-vectors are converted into numpy
arrays on the Python side.

To set a variable inside the R namespace do:

>>> conn.eval('aVar <- "abc"')
'abc'

and to request its value just do:

>>> conn.eval('aVar')
'abc'

Expression evaluation without expecting a result

In the example above setting a variable in R did not only set the variable but also returned it back to Python:

>>> conn.eval('aVar <- "abc"')
'abc'

This is usually not something one would expect or need, and especially in the case of very large data this can cause
unnecessary network traffic. The solution to this is to either call eval() with another option void=True, or to
use conn.voidEval() directly. The following two calls are identical and do not return the string ‘abc’:

>>> conn.eval('aVar <- "abc"', void=True)
>>> conn.voidEval('aVar <- "abc"')

Defining functions and calling them through expression evaluation

It is also possible to create functions inside the R interpreter through the connector’s namespace, or even to
execute entire scripts. Basically you can do everything which is possible inside a normal R console:

create a function and execute it:
>>> conn.voidEval('doubleit <- function(x) { x*2 }')
>>> conn.eval('doubleit(2)')
4.0

store a mini script definition in a Python string ...
>>> my_r_script = '''
squareit <- function(x)
 { x**2 }
squareit(4)
'''
.... and execute it in R:
>>> conn.eval(my_r_script)
16.0

The R namespace - setting and accessing variables in a more Pythonic way

Previous sections explained how to set a variable inside R by evaluation a statement in string format:

>>> conn.voidEval('aVar <- "abc"')

This is not very elegant and has limited ways to provide values already stored in Python variables. A much nicer
way to do this is by setting the variable name in R as an attribute to a special variable conn.r which points
to the namespace in R directly. The following statement does the same thing as the one above, just “more Pythonic”:

>>> conn.r.aVar = "abc"

So of course it is then possible to compute values or copy them from Python variables into R:

>>> conn.r.aVar = some_python_number * 1000.505

To retrieve a variable from R just use it as expected:

>>> print('A value from R:', conn.r.aVar)

In its current implementation pyRserve allows to set and access the following base types:

	None (NULL)

	boolean

	integers (32-bit only)

	floating point numbers (64 bit only), i.e. doubles

	complex numbers

	strings

Furthermore the following containers are supported:

	lists

	numpy arrays

	TaggedList

	AttrArray

	TaggedArray

Lists can be nested arbitrarily, containing other lists, numbers, or arrays. TaggedList, AttrArray, and
TaggedArray are
special containers to handle very R-specific result types. They will be explained further down in the manual.

The following example shows how to assign a python list with mixed data types to an R variable called aList,
and then to retrieve it again:

>>> conn.r.aList = [1, 'abcde', numpy.array([1, 2, 3], dtype=int)]
>>> conn.r.aList
[1, 'abcde', array([1, 2, 3])]

Numpy arrays can also contain dimension information which are translated into R matrices when assigned to the R namespace:

>>> arr = numpy.array(range(12))
>>> arr.shape = (3, 4)
>>> conn.r.aMatrix = arr
>>> conn.r('dim(aMatrix)') # give me the dimension of aMatrix on the R-side
array([3, 4])

The result of the shape information is - in contrast to what one gets from numpy arrays - an array itself.
There is nothing special about this, this is just the way R internally deals with that information.

Expression evaluation through the R namespace

Instead of using conn.eval(‘1+1’) expressions can also be evaluate by making a function call on the R namespace
directly. The following calls are producing the same result:

>>> conn.r('1+1')
>>> conn.eval('1+1')

conn.r(’…’) also accepts the `void-option in case you want to suppress that a result is returned. Again the
following three calls are producing the same result:

>>> conn.r('1+1', void=True)
>>> conn.eval('1+1', void=True)
>>> conn.voidEval('1+1')

Calling functions in R

Functions defined in R can be called as if they were a Python methods, declared in the namespace of R.

Before the examples below are usable we need to define a couple of very simple functions within the R namespace:
func0() accepts no parameters and returns a fixed string, func1() takes exactly one parameter and
funcKKW() takes keyword arguments with default values:

conn.voidEval('func0 <- function() { "hello world" }')
conn.voidEval('func1 <- function(v) { v*2 }')
conn.voidEval('funcKW <- function(a1=1.0, a2=4.0) { list(a1, a2) }')

Now calling R functions is as trivial as calling plain Python functions:

>>> conn.r.func0()
"hello world"
>>> conn.r.func1(5)
10
>>> conn.r.funcKW(a2=6.0)
[1.0, 6.0]

Of course you can also call functions built-in to R:

>>> conn.r.length([1,2,3])
3

Getting help with functions

If R is properly installed including its help messages those can be retrieved directly.
Also here no surprise - just do it the Python way through the __doc__ attribute:

>>> print(conn.r.sapply.__doc__)
lapply package:base R Documentation

Apply a Function over a List or Vector

Description:

'lapply' returns a list of the same length as 'X', each element of
which is the result of applying 'FUN' to the corresponding element
of 'X'.
[...]

Of course this only works for functions which provide documentation. For all others __doc__ just returns None.

Applying an R function as argument to another function

A typical application in R is to apply a vector to a function, especially via sapply and its brothers (or sisters,
depending how how one sees them).

Fortunately this is as easy as you would expect:

>>> conn.voidEval('double <- function(x) { x*2 }')
>>> conn.r.sapply(numpy.array([1, 2, 3]), conn.r.double)
array([2., 4., 6.])

Here a Python array and a function defined in R are provided as arguments to the R function sapply.

Of course the following attempt to provide a Python function as an argument into R makes no sense:

>>> def double(v): return v*2
...
>>> conn.r.sapply(array([1, 2, 3]), double)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'double' is not defined

This will result in a NameError error because the connector tries to reference the function ‘double’ inside the
R namespace. It should be obvious that it is not possible to transfer function implementations from Python to R.

Applying a variable already defined in R to a function

To understand why this is an interesting feature one has to understand how Python and pyRserve works. The following
code is pretty inefficient:

>>> conn.r.arr = numpy.array([1, 2, 3])
>>> conn.r.sapply(conn.r.arr, conn.r.double)

To see why it is inefficient it is reproduced here more explicitly, but doing exactly the same thing:

>>> conn.r.arr = numpy.array([1, 2, 3])
>>> arr = conn.r.arr
>>> conn.r.sapply(arr, conn.r.double)

Now it is clear that the value of conn.r.arr is first set inside R, then retrieved back to Python
(in the second line) and then again sent back to the sapply function. This is pretty inefficient,
it would be much better just to set the array in R and then to refer to conn.r.arr instead of sending
it back and forth. Here the “reference” namespace called ref comes into play:

>>> conn.ref.arr
<RVarProxy to variable "arr">

Through conn.ref it is possible to only reference a variable (or a function) in the R namespace without actually
bringing it over to Python. Such a reference can then be passed as an argument to every function called
from conn.r. So the proper way to make the call above is:

>>> conn.r.arr = numpy.array([1, 2, 3])
>>> conn.r.sapply(conn.ref.arr, conn.r.double)

However it is still possible to retrieve the actual content of a variable proxy through its value() method:

>>> conn.ref.arr.value()
array([1., 2., 3.])

So using conn.ref instead of conn.r primarily returns a reference to the remote variable in the R namespace,
instead of its value. Actually we have done that before with the function conn.r.double. This doesn’t return
the R function to Python - something which would be pretty useless. Instead only a proxy to the R function is returned:

>>> conn.r.double
<RFuncProxy to function "double">

Actually functions are always returned as proxy references, both in the conn.r and the conn.ref namespace,
so conn.r.<function> is the same as conn.ref.<function>.

Using reference to R variables is indeed absolutely necessary for variable content which is not transferable into
Python, like special types of R classes, complex data frames etc.

Handling complex result objects from R functions

Some functions in R (especially those doing statistical calculations) return quite complex result objects.

The T-test is such an example. In the R shell you would see something like this (please ignore the silly values
applied to the t test):

> t.test(c(1,2,3,1),c(1,6,7,8))

 Welch Two Sample t-test

data: c(1, 2, 3, 1) and c(1, 6, 7, 8)
t = -2.3054, df = 3.564, p-value = 0.09053
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -8.4926941 0.9926941
sample estimates:
mean of x mean of y
 1.75 5.50

This is what you would get to see directly in your R shell.

Now, how would this convoluted result be transferred into Python objects? For this to be possible
pyRserve has defined three special classes that allow for a mapping from R to Python objects. These classes
are explained the the following sections. Afterwards - with that knowledge - we have a final look at the result
of the t-test again.

TaggedLists

The first special type of container is called “TaggedList”. It reflects a list-type object in R where
items can be accessed in two ways as shown here (this is now pure R code):

> t <- list(husband="otto", wife="erna", "5th avenue")
> t[1]
$husband
[1] "otto"

> t['husband']
$husband
[1] "otto"

So items in the list can be either accessed via their index position, or through their “tag”. Please note that the
third list item (“5th avenue”) is not tagged, so it can only be accessed via its index number, i.e. t[3]
(indexing in R starts at 1 and not at zero as in Python!).

There is no direct match to any standard Python construct for a TaggedList. Python dictionaries do not preserve
their elements’ order and also don’t allow for missing keys (which is why an OrderDict also doesn’t help).
NamedTuples on the other side would do the job but don’t allow items to be appended or deleted since they are
immutable.

The solution was to provide a special class in Python which is called TaggedList. When accessing the
list t from the example above you’ll obtain an instance of a TaggedList in Python:

>>> t = conn.eval('list(husband="otto", wife="erna", "5th avenue")')
>>> t
TaggedList(husband='otto', wife='erna', '5th avenue')

This TaggedList instance can be accessed in the same way as its R pendant, except for the fact the indexing is
starting at zero in the usual Pythonic way:

>>> t[0]
'otto'
>>> t['husband']
'otto'
>>> t[2]
'5th avenue'

To retrieve its data suitable for instantiating another TaggedList on the Python side get its data as a list of
tuples. This also demonstrates how a TaggedList can be created directly in Python:

>>> from pyRserve import TaggedList
>>> t.astuples
[('husband', 'otto'), ('wife', 'erna'), (None, '5th avenue')]
>>> new_tagged_list = TaggedList(t.astuples)

Note

TaggedList does not provide the full list API that one would expect, some methods are just to entirely
implemented yet. However it is useful enough to retrieve all information obtained out of a R result object.

AttrArrays

An AttrArray is simply an normal numpy array, with an additional dictionary attribute called attr.
This dicionary is used to store meta data associated to an array retrieved from R.

Let’s create such an AttrArray in R, and transfer it into to the Python side:

>>> conn.voidEval("t <- c(-8.49, 0.99)")
>>> conn.voidEval("attributes(t) <- list(conf.level=0.95)")
>>> conn.r.t
AttrArray([-8.49, 0.99], attr={'conf.level': array([0.95])})

To create such an array from Python in R is also possible via:

>>> from pyRserve import AttrArray
>>> conn.r.t = AttrArray.new([-8.49, 0.99], {'conf.level': numpy.array([0.95])})

Instead of a list argument the new function also accepts a numpy array as well:

>>> conn.r.t = AttrArray.new(numpy.array([-8.49, 0.99]), {'conf.level': numpy.array([0.95])})

TaggedArrays

The third special data type provided by pyRserve is the so called TaggedArray. It provides basically the same
features as TaggedList above, however the underlying data type is a numpy-Array instead of a Python list.
In fact, a TaggedArray is a direct subclass of numpy.ndarray, enhanced with some new features
like accessing array cells by name as in TaggedList.

For the moment TaggedArrays only make real sense if they are 1-dimensional, so please do not change
its shape. The results would not really be predictable.

To create a TaggedArray on the R side and transfer it to Python type:

>>> res = conn.eval('c(a=1.,b=2.,3.)')
>>> res
TaggedArray([1., 2., 3.], key=['a', 'b', ''])
>>> res[1]
2.0
>>> res['b']
2.0

The third element in the array did not obtain a name on the R side, so it is represented by an empty string in
the TaggedArray object.

Although TaggedArray``s are normal numpy arrays they loose their tags when further processed in Python, but still
present themselves (via ``__repr__) as TaggedArray. This is a current flaw in their implementation.

To create a TaggedArray directly in Python there is a constructor function new() which takes a normal
1-d numpy array as the first argument and a list of tags as the second. Both arguments must match in their size:

>>> from pyRserve import TaggedArray
>>> arr = TaggedArray.new(numpy.array([1, 2, 3]), ['a', 'b', ''])
>>> arr
TaggedArray([1, 2, 3], key=['a', 'b', ''])

Back to the t-test example

After TaggedList and TaggedArray have been introduced we can now go back to the t-test mentioned
before. Let’s make the same call to the test function, this time just from the Python side, and then
look at the result. Again there are two ways to call it, one via string evaluation by the R interpreter,
one by directly providing native Python parameters.
So:

>>> res = conn.eval('t.test(c(1,2,3,1),c(1,6,7,8))')

and:

>>> res = conn.r.test(numpy.array([1,2,3,1]), numpy.array([1,6,7,8]))

does actually the same thing.

	Looking at the result we get::

	>>> res
<TaggedList(statistic=TaggedArray([-2.30541984]),
 parameter=TaggedArray([3.56389482], tags=['df']),
 p.value=0.090532640733331213,
 conf.int=TaggedArray([-8.49269413, 0.99269413], attr={'conf.level': array([0.95])}),
 estimate=TaggedArray([1.75, 5.5], tags=['mean of x', 'mean of y']),
 null.value=TaggedArray([0.], tags=['difference in means']),
 alternative='two.sided',
 method='Welch Two Sample t-test',
 data.name='c(1, 2, 3, 1) and c(1, 6, 7, 8)')>

The result is an instance of a TaggedList, containing different types of list items.

So to access e.g. the confidence interval one would type in Python:

>>> res['conf.int']
AttrArray([-8.49269413, 0.99269413], attr={'conf.level': array([0.95])})

This returns an AttrArray where the confidence level is stored in an attribute called conf.level
in the attr-dictionary:

>>> res['conf.int'].attr['conf.level']
array([0.95])

In the res-result data structure above there are also objects of a container called TaggedArray:

>>> res['estimate']
TaggedArray([1.75, 5.5], tags=['mean of x', 'mean of y'])
>>> res['estimate'][1]
5.5
>>> res['estimate']['mean of y']
5.5

Out Of Bounds messages (OOB)

Starting with version 1.7, Rserve allows OOB messages to be sent from R to Rserve clients, i.e. it
allows for nested communication during an eval call.

This capability requires to start Rserve with a configuration enabling it, and loading Rserve itself as a
library into the server. Both is easily accomplished in a config file (e.g. oob.config) like this:

oob enable
eval library(Rserve)

Then start Rserve using this config file:

R CMD Rserve --RS-conf oob.conf

OOB messaging works by calling self.oobSend or self.oobMessage in R, e.g.:

>>> conn.eval('self.oobSend(1)')
True

This does nothing but to indicate that it works. For real usefulness, one needs to register a callback
that gets called with the sent data and user code as parameters:

>>> def printoobmsg(data, code): print(data, code)
...
>>> conn.oobCallback = printoobmsg
>>> conn.eval('self.oobSend("foo")') # user code is 0 per default
<<< foo 0
True

The other function, self.oobMessage executes the callback and gives its return value to R:

>>> conn.oobCallback = lambda data, code: data**code
>>> conn.voidEval('dc <- self.oobMessage(2, 3)')
>>> conn.r.dc
8

The user code might be useful to create a callback convention used for switching callbacks based
on agreed-upon codes:

>>> C_PRINT = conn.r.C_PRINT = 0
>>> C_ECHO = conn.r.C_ECHO = 1
>>> C_STORE = conn.r.C_STORE = 2
>>> store = []
>>> functions = {
... C_PRINT: lambda data: print('<<<', data),
... C_ECHO: lambda data: data,
... C_STORE: store.append,
... }
>>> def dispatch(data, code):
... return functions[code](data)
>>> conn.oobCallback = dispatch
>>>
>>> conn.eval('self.oobMessage("foo", C_PRINT)')
<<< foo
>>> conn.eval('self.oobMessage("foo", C_ECHO)')
'foo'
>>> conn.eval('self.oobMessage("foo", C_STORE)')
>>> store
['foo']
>>> conn.eval('self.oobMessage('foo', 3)')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 3

An example showing how nesting of OOB messages works

The previous examples were showing the bare application of OOB messages,
but the real power of it comes when one understands how messages are
getting nested within a eval call.

For that first create an R function which returns progress information
during a “complicated” calculation:

>>> r_func = """
... big_job <- function(x)
... {
... a <- x*2
... self.oobSend('25% done')
... b <- a * a
... self.oobSend('50% done')
... c <- a + b
... self.oobSend('75% done')
... d <- c**2
... self.oobSend('100% done')
... -1 * d
... }"""
>>> conn.eval(r_func)

Then create a progress report function, register it as a callback and
then call the actual R function:

>>> def progress(msg, code): print(msg)
...
>>> conn.oobCallback = progress
>>> res = conn.r.big_job(5)
25% done
50% done
75% done
100% done
>>> res
-12100.0

Changelog

	
	V.1.0.1 (2023-01-10)

	
	Replace deprecated numpy.bool8 with numpy.bool_

	Upgraded installation instructions in INSTALL file (more up-to-date R and Rserve)

	Added Dockerfile for installing R and Rserve into container (used for github actions)

	Enabled github actions for testing

	
	V 1.0.0 (2022-10-13)

	
	Added docu for secure connection to Rserve via SSH tunnel

	Updated meta data for pyRserve package

	Added deprecation warning for Python 2

	Corrected links to documentation

	
	V 1.0.0b3 (2021-06-25)

	Brought usage of pytest into the year 2021.

	use fixtures for setting up an Rserve connection

	put fixtures into conftest.py

	added command line option for controlling rserve startup

	properly named rserve-test.conf file.

	
	V 1.0.0b2 (2021-06-22)

	
	Added missing version.txt file to wheel

	
	V 1.0.0b1 (2021-06-22)

	
	Updated and cleanup documentation

	Updated for more recent versions of R and Rserve

	Added pre-commit hooks

	Separated packages for dev/testing from production ones

	Enhanced handling of NA values (thanks to Max Taggart)

	Fixed numpy deprecation warnings (thanks to chaddcw)

	
	V 0.9.2 (2019-12-19)

	
	Replaced deprecated numpy.fromstring with numpy.frombuffer

	Flake8/pep8 cleanup

	Refactored exception hierarchy

	
	V 0.9.1 (2017-05-19)

	
	Removed a bug on some Python3 versions

	Added proper support for S4 objects (thanks to flying-sheep [https://github.com/flying-sheep])

	Added support for Python3 unitests on travis (thanks to flying-sheep [https://github.com/flying-sheep])

	
	V 0.9.0 (2016-04-11)

	
	Full support for data objects larger than 2**24 bytes

	Maximum size of message sent to Rserv can now be 2**64 bytes

	
	V 0.8.4 (2015-09-06)

	
	fixed missing requirements.txt in MANIFEST.in

	fixed bug in installer (setup.py)

	
	V 0.8.3 (2015-09-04)

	
	Fixed exception catching for Python 3.4 (thanks to eeue56)

	Some pep8 cleanups

	explicit initialization of a number of instance variables in some classes

	cleanup of import statements in test modules

	Allow for message sizes greater than 4GB coming from R server

	
	V 0.8.2 (2015-07-11)

	
	Added support for S4 objects (generated when e.g. creating a db object in R)

	
	V 0.8.1 (2014-07-17)

	
	Fixed errors in the documentation, updated outdated parts

	For unittesting run Rserve on different port from the default 6311 to
avoid clashes with regular Rserve running on the same server

	Fixed but when passing a R-function as argument to a function call (e.g. to sapply),
added unittest for this

	
	V 0.8.0 (2014-06-26)

	
	Added support for remote shutdown of Rserve (thanks to Uwe Schmitt)

	Added support for Out-Of-Bounds (OOB) messages (thanks to Philipp alias flying-sheep)

	
	V 0.7.3 (2013-08-01)

	
	Added missing MANIFEST.in to produce a complete tgz package (now includes docs etc)

	Fixed bug on x64 machines when handling integers larger than 2**31

	
	V 0.7.2 (2013-07-19)

	
	Tested with Python 3.3.x, R 3.0.1 and Rserve 1.7.0

	Updated documentation accordingly

	Code cleanup for pep8 (mostly)

	Marked code as production stable

	
	V 0.7.1 (2013-06-23)

	
	Added link to new GitHub repository

	fixed URL to documentation

	
	V 0.7.0 (2013-02-25)

	
	Fixed problem when receiving very large result sets from R (added support for XT_LARGE header flag)

	Correctly translate multi-dimensional R arrays into numpy arrays (preserve axes the right way)
Removed ‘arrayOrder’ keyword argument as a consequence.
THIS IS AN API CHANGE - PLEASE CHECK AND ADAPT YOUR CODE, ESPECIALLY IF YOU USE MULTI-DIM ARRAYS!!

	Support for conn.voidEval and conn.eval and new ‘defaultVoid’-kw argument in the connect() function

	Fixed bug in receiving multi-dimensional boolean (logical) arrays from R

	Added support for multi-dimensional string arrays

	added support for XT_VECTOR_EXPR type generated e.g. via “expression()” in R (will return a list
with the expression content as list content)

	windows users can now connect to localhost by pyRserve.connect() (omitting ‘localhost’ parameter)

	
	V 0.6.0 (2012-06-25)

	
	support for Python3.x

	Python versions <= 2.5 no more supported (due to Py3 support)

	support for unicode strings in Python 2.x

	full support complex numbers, partial support for 64bit integers and arrays

	suport for Fortran-style ordering of numpy arrays

	elements of single-item arrays are now translated to native python data types

	much improved documentation

	better unit test coverage

	usage of the deprecated conn(<eval-string>) is no more possible

	pyRserve.rconnect() now also removed

	
	V 0.5.2 (2011-12-02)

	
	Fixed problem with 32bit integers being mistakenly rendered into 64bit integers on 64bit machines

	
	V 0.5.1 (2011-11-22)

	
	Fixed improper DeprecationWarning when evaluating R statements via conn.r(…)

	
	V 0.5 (2011-10-03)

	
	Renamed pyRserve.rconnect() to pyRserve.connect(). The former still works but shows a DeprecationWarning

	String evaluation should now only be executed on the namespace directly, not on the connection object anymore.
The latter still works but shows a DeprecationWarning.

	New kw argument atomicArray=True added to pyRserve.connect() for preventing single valued arrays from being
converted into atomic python data types.

	
	V 0.4 (2011-09-20)

	
	Added support for nested function calls. E.g. conn.r.t.test(….) now works.

	Proper support for boolean variables and vectors

	
	V 0.3 (2010-06-08)

	
	Added conversion of more complex R structures into Python

	Updated documentation (installation, manual)

	V 0.2 (2010-03-19) Fixed rendering of TaggedArrays

	V 0.1 (2010-01-10) Initial version

This is the MIT license

(see: http://www.opensource.org/licenses/mit-license.php)

Copyright (c) 2009, 2010, 2011 Ralph Heinkel (rh [at] ralph-heinkel.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to pyRserve’s documentation!

 		
 Overview

 		
 What pyRserve does

 		
 Supported platforms

 		
 License

 		
 Quick installation

 		
 Quick usage

 		
 Source code repository

 		
 Documentation

 		
 Support

 		
 Missing features

 		
 Installation

 		
 Installing R from sources

 		
 Installing Rserve

 		
 Installing pyRserve

 		
 Running unittests

 		
 pyRserve manual

 		
 Setting up a connection to Rserve

 		
 Running both Rserve and pyRserve locally on one host

 		
 Setting up a remote connection to Rserve

 		
 Shutting down Rserve remotely

 		
 String evaluation in R

 		
 More expression evaluation

 		
 Expression evaluation without expecting a result

 		
 Defining functions and calling them through expression evaluation

 		
 The R namespace - setting and accessing variables in a more Pythonic way

 		
 Expression evaluation through the R namespace

 		
 Calling functions in R

 		
 Getting help with functions

 		
 Applying an R function as argument to another function

 		
 Applying a variable already defined in R to a function

 		
 Handling complex result objects from R functions

 		
 TaggedLists

 		
 AttrArrays

 		
 TaggedArrays

 		
 Back to the t-test example

 		
 Out Of Bounds messages (OOB)

 		
 An example showing how nesting of OOB messages works

 		
 Changelog

 		
 This is the MIT license

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

